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A new family of flux-continuous, locally conservative, finite-volume schemes is presented
for solving the general tensor pressure equation of subsurface flow in porous media.
The new schemes have full pressure continuity imposed across control-volume faces.
Previous families of flux-continuous schemes are point-wise continuous in pressure
and flux.

When applying the earlier point-wise flux-continuous schemes to strongly anisotropic
full-tensor fields their failure to satisfy a maximum principle (as with other FEM and
finite-volume methods) can result in loss of local stability for high anisotropy ratios
which can cause strong spurious oscillations in the numerical pressure solution.

An M-matrix analysis reveals the upper limits for guaranteeing a maximum principle
for general 9-point schemes and aids in the design of schemes that minimize the occur-
rence of spurious oscillations in the discrete pressure field.

The full pressure continuity schemes are shown to possess a larger range of flux-con-
tinuous schemes, than the previous point-wise counter parts. For strongly anisotropic
full-tensor cases it is shown that the full quadrature range possessed by the new
schemes permits these schemes to exploit quadrature points (previously out of range)
that are shown to minimize spurious oscillations in discrete pressure solutions. The
new formulation leads to a more robust quasi-positive family of flux-continuous schemes
applicable to general discontinuous full-tensor fields.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Subsurface flow in porous media is governed by Darcy’s law. When formulating a finite-volume pressure equation
scheme, continuous normal flux and pressure are key physical constraints that must be imposed at control-volume inter-
faces, across which strong discontinuities in permeability can occur. Rapid variation in permeability with strong anisotropy
are common features in subsurface reservoirs.

The derivation of algebraic flux continuity conditions for full-tensor discretization operators has lead to families of effi-
cient locally conservative flux-continuous control-volume distributed (CVD) finite-volume schemes for determining the dis-
crete pressure and velocity fields in subsurface reservoirs [1,3–11], these schemes are classified by the quadrature
parameterization 0 < q 6 1. Schemes of this type are also called multi-point flux approximation schemes or MPFA [14,15]
where focus has been on a scheme that belongs to the above mentioned family with (q = 1). Further schemes of this type
. All rights reserved.
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are presented in [35,16–19]. All of these schemes are applicable to the diagonal and full-tensor pressure equation with gen-
erally discontinuous coefficients and remove the O(1) error introduced by standard reservoir simulation schemes when ap-
plied to full tensor flow approximation. Coupling of the flux-continuous schemes with higher order convective flux
approximations are presented on mixed quadrilateral-triangle grids [12] and on tetrahedra–hexahedra grids with a pyramid
interface in [13] respectively. Other schemes that preserve flux continuity have been developed from variational frame-
works, using the mixed finite element method (MFE), e.g. [20–25] and related work [26] and discontinuous galerkin methods
[27,28], however these schemes require additional degrees of freedom.

When applying these schemes to the elliptic pressure equation with a strongly anisotropic full-tensor field they can fail to
satisfy the maximum principle (as with other FEM and finite-volume methods) and result in spurious oscillations in the
numerical pressure solution. M-matrix conditions were first derived in [1–3], monotone matrix conditions are presented
in [30,31]. Grid optimization techniques have also been used to improve stability of the discrete system [32]. Discretization
schemes aimed at improving stability are presented in [29,33,41]. Non-linear methods have also been proposed, [10,11]
(flux-splitting) and [42] (positivity preserving) both of which have been shown to yield numerical pressure solutions that
are free of spurious oscillations.

The M-matrix conditions [2,3] define the upper limits for ensuring a local maximum principle is obtained for full-tensor
fields. A key condition is that the modulus of the off-diagonal tensor coefficients are bounded by the minimum of the diag-
onal coefficients. For higher anisotropic ratios, when the resulting discrete matrices violate these bounds these schemes can
violate the maximum principle (as with more standard methods) and the numerical pressure solutions can consequently ex-
hibit spurious oscillations.

In this paper a new family of flux-continuous, locally conservative, finite-volume schemes is presented for solving the
general tensor pressure equation of subsurface flow in porous media. The new schemes have full pressure continuity im-
posed across control-volume faces, in contrast to the earlier families of flux-continuous schemes with point-wise continuity
in pressure and flux. A full pressure continuity scheme that has helped to motivate this formulation was introduced in [35].
However, the formulation of [35] is derived from linear basis functions and consequently does not extend to a family of
schemes. A brief description of the schemes presented here was first given in [3] and initial test results are given in [39].
Since the submission of this paper, a related scheme [38] has also been presented.

The new family of schemes yield improved performance for challenging problems where earlier flux-continuous schemes
exhibit strong spurious oscillations. The M-matrix analysis leads to an optimal quadrature range for these methods. The de-
gree of freedom within the family of full pressure continuity schemes presented is shown to maximize the quadrature range
of the flux-continuous schemes. For strongly anisotropic full-tensor cases where M-matrix conditions are violated, it is
shown that the earlier families of schemes cannot avoid decoupling of the solution which leads to severe spurious oscilla-
tions in the discrete solution. The full quadrature range of the new schemes permits use of quadrature points that were pre-
viously out of range for the earlier methods, and that the resulting schemes minimize spurious oscillations in discrete
pressure solutions. The new formulation leads to a more robust quasi-positive family of flux-continuous schemes applicable
to general discontinuous full-tensor fields.

This paper is organized as follows: Section 2 gives a description of the single phase flow problem encountered in reservoir
simulation with respect to the general tensor pressure equation. In Section 3 the formulation of the point-wise continuous
triangle pressure support (TPS) flux-continuous finite-volume schemes with discretization in physical space is presented. A
general CVFE family formulation [2] is presented in Section 4 which motivates the basis functions for the new full pressure
support scheme and comparisons between schemes. The family of full pressure support (FPS) schemes is introduced in Sec-
tion 5. Positivity conditions are presented in Section 6. The relationships between TPS, FPS and CVFE are presented in Section
7 for a spatially constant tensor together with M-matrix properties of the schemes. The TPS, FPS quadrature ranges are com-
pared in Section 8, where the crucial advantages of FPS over TPS are given. In Section 9 the TPS schemes are shown to belong
to the upper quadrature limit which leads to decoupled solutions, and helps to explain the sensitivity of TPS at high anisot-
ropy ratio. Quasi-positive QM-matrices which are outside of the formal M-matrix limits are presented in Section 10. Numer-
ical examples are presented in Section 11, that illustrate benefits and features of the schemes in terms of QM-matrix
properties. Conclusions follow in Section 12.
2. Flow equation and problem description

2.1. Cartesian tensor

The problem is to find the pressure / satisfying
�
Z

X
r � Kðx; yÞr/ds ¼

Z
X

qds ¼ M ð1Þ
over an arbitrary domain X, subjected to suitable (Neumann/Dirichlet) boundary conditions on boundary oX, where
V = �Kr/ is the Darcy velocity. The right hand side term M represents a specified flow rate and r = (ox, oy). Matrix K can
be a diagonal or full cartesian tensor with general form
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K ¼
K11 K12

K12 K22

� �
: ð2Þ
The full-tensor pressure equation is assumed to be elliptic such that
K2
12 6 K11K22: ð3Þ
The tensor can be discontinuous across internal boundaries of X. The boundary conditions imposed here are Dirichlet and
Neumann. For incompressible flow pressure is specified at atleast one point in the domain. For reservoir simulation, Neu-
mann boundary conditions on oX have zero flux imposed on solid walls such that ðKr/Þ � n̂ ¼ 0, where n̂ is the outward nor-
mal vector to oX.

2.2. General tensor equation

The pressure equation is defined above with respect to the physical tensor in the initial classical Cartesian coordinate sys-
tem. Now we proceed to a general curvilinear coordinate system that is defined with respect to a uniform dimensionless
transform space with a (n, g) coordinate system. Choosing Xp to represent an arbitrary control-volume comprised of surfaces
that are tangential to constant (n, g) respectively, Eq. (1) is integrated over Xp via the Gauss divergence theorem to yield
�
I

oXp

ðKrUÞ � n̂ds ¼M ð4Þ
where oXp is the boundary of Xp and n̂ is the unit outward normal. Spatial derivatives are computed using
/x ¼ Jð/; yÞ=Jðx; yÞ;/y ¼ Jðx;/Þ=Jðx; yÞ; ð5Þ
where J(x, y) = xnyg � xgyn is the Jacobian. Resolving the x, y components of velocity along the unit normals to the curvilinear
coordinates (n, g), e.g., for n = constant, n̂ds ¼ ðyg;�xgÞdg gives rise to the general tensor flux components
F ¼ �
Z
ðT11/n þ T12/gÞdg; G ¼ �

Z
ðT12/n þ T22/gÞdn; ð6Þ
where general (Piola) tensor T has elements defined by
T11 ¼ ðK11y2
g þ K22x2

g � 2K12xgygÞ=J;

T22 ¼ ðK11y2
n þ K22xn � 2K12xnynÞ=J;

T12 ¼ ðK12ðxnyg þ xgynÞ � ðK11ygyn þ K22xgxnÞÞ=J

ð7Þ
and the closed integral can be written as
Z Z
Xp

ðon
eF þ og

eGÞ
J

J dndg ¼ MnF þ MgG ¼ m; ð8Þ
where e.g., MnF is the difference in net flux with respect to n and eF ¼ �ðT11/n þ T12/gÞ; eG ¼ �ðT12/n þ T22/gÞ. Thus any
scheme applicable to a full-tensor also applies to non-K-Orthogonal grids. Note that T11, T22 P 0 and ellipticity of T follows
from Eqs. (3) and (7). Full tensors can arise from upscaling, unstructured grids and local orientation of the grid and perme-
ability field. For example by Eq. (7), a diagonal anisotropic Cartesian tensor leads to a full-tensor on a curvilinear orthogonal
grid.

3. Family of flux-continuous finite-volume schemes

Families of flux-continuous locally conservative control-volume distributed (CVD) finite-volume schemes presented in
[3–9] have been developed for different grid types including cell-vertex and cell-centred structured and unstructured formu-
lations in physical space and transform space. Numerical convergence rates for a range of quadrature rules in physical space
are presented in [9]. We present a summary of the formulation here for the structured cell-centred quadrilateral formulation.
(The formulation has also been developed for cell-vertex structured and unstructured grids, e.g. [4,9]). The nine node support
of the cell-centred scheme centred on i, j is indicated in Fig. 1(a). The scheme has cell-centred flow and rock variables, so that
the approximation points (or nodes) are at the centres of the primal grid cells and the primal grid cells are also the control-
volumes over which permeability is defined to be piecewise constant, i.e. in this case control-volume distributed CVD with
respect to the primal grid cells. Each group of four cell-centred nodes forms a dual-cell Fig. 2, and four triangles are then de-
fined in the dual-cell as drawn in Fig. 3, e.g., as in (a) and (b), the position depending on the quadrature point defined below.
The dual-cell perimeter is defined by joining cell centres with cell edge mid-points as indicated by the dashed contour in
Fig. 2(b). The dual cells partition the primal cells (or control-volumes) into sub-cells. Two faces of each sub-cell also coincide
with sub-faces of the parent control-volume, e.g., faces (S, V3), (V3, W) are faces of the sub-cell defined by corner points (i, j), S,
V3, W Fig. 2(a).
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Fig. 1. (a) Nine-node support, cell-centred control-volume i, j. (b) dual-cell dashed line.
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Fig. 2. (a) Cell centre node i, j and 4 vertices V1, . . . ,V4 of primal cell. (b) Dual cell-centred on V3, sub-cells and local node numbering over dual-cell.
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Fig. 3. (a) Standard quadrature, q = 1. (b) Example quadrature q = 0.1, triangle pressure support.
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3.0.1. Family of flux-continuous schemes – quadrature parameterization

Families of flux-continuous schemes are formed when imposing normal flux and pressure continuity conditions on
the sub-faces where the four shaded triangles meet, at the four positions (N, S, E, W). These points lie on the faces of
the sub-cells that are within the perimeter of the dual-cell shown with dashed line in Fig. 2(b). On each sub-face the
point of continuity is parameterized with respect to the sub-cell face by the variable q where referring to Fig. 2(a)
the range of q is given by (0 < q 6 1] with q = 1 corresponding to the point of intersection between the sub-faces and
the dual-cell perimeter. Hence for a given sub-cell, the points of continuity can lie anywhere in the interval
(0 < q 6 1] on the two faces of each sub-cell inside a dual-cell, that coincide with the control-volume sub-faces, and
the value of q defines the local quadrature point and hence the family of flux-continuous finite-volume schemes. Cell
face pressures /N, /S, /E, /W are introduced at N, S, E, W locations. Pressure sub-triangles are then defined with local
triangular support imposed within each quarter (sub-cell) of the dual-cell as shown (shaded triangles) in Fig. 3. Pressure
/, in local cell coordinates, then assumes a piecewise linear variation over each shaded triangle, with triangular pressure
support (TPS).

The parametric variation in q is illustrated further using the sub-cell example of Fig. 2, with sub-cell containing shaded
sub-triangle (1, S, W). Let r1 = (x1, y1) denote the coordinates of the cell-centre and rS = (xS, yS), rW = (xW, yW) denote the local
continuity coordinates. Then it is understood that the continuity position is a function of q with rS(q) and rW(q).

Piecewise constant Darcy fluxes are now constructed on each of the pressure sub-triangles belonging to the sub-cells of
the dual-cell. The local linear pressure /, is expanded in sub-triangle coordinates. The Darcy-flux approximation for sub-tri-
angle (1, S, W) is given below.
/n

/g

 !
¼

/S � /1

/W � /1

� �
ð9Þ
and
xnðqÞ
xgðqÞ

� �
¼

xSðqÞ � x1

xW ðqÞ � x1

� �
;

ynðqÞ
ygðqÞ

 !
¼

ySðqÞ � y1

ywðqÞ � y1

� �
: ð10Þ
Using Eqs. (9) and (10) the discrete Darcy velocity is defined as
vh ¼ �K1r/h ¼ �K1GðqÞ
/n

/g

 !
; ð11Þ
where K1 is the local permeability tensor of cell 1 and dependency of r/h on quadrature point arises through
GðqÞ
/n

/g

 !
¼

ygðqÞ �ynðqÞ
�xgðqÞ xnðqÞ

� �
1

JðqÞ
/S � /1

/W � /1

� �
; ð12Þ
where approximate rn(q) and rg(q) are defined by Eq. (10). The normal flux at the left hand side of S (Fig. 2) is resolved along
the outward normal vector dLS ¼ 1

2 ððyv3 � yv2Þ;�ðxv3 � xv2ÞÞ and is expressed in terms of the general tensor T = T(q) as
F1
S ¼ vh � dLS ¼ �ðT1

11/n þ T1
12/gÞj

1
S ð13Þ
where it is understood that the resulting coefficients of �ð/n;/gÞj
1
S denoted by T11j1S and T12j2S are sub-cell (physical-space)

approximations of the general tensor components (Eq. (13)) at the left hand face at S, and are functions of q. A similar expres-
sion for flux is obtained at the right hand side of S from cell 2 (Fig. 2(b). Similarly sub-cell fluxes are resolved on the two sides
of the other faces at E, W and N. Flux continuity is then imposed across the four cell interfaces at the four positions N, S, E and
W. (Fig. 3 which are specified according to quadrature point q.)

The physical space flux-continuity conditions for cells 1–4, sharing a common grid vertex inside the dual-cell are then
expressed as
FN ¼ �ðT11/n þ T12/gÞj
3
N ¼ �ðT11/n þ T12/gÞj

4
N ;

FS ¼ �ðT11/n þ T12/gÞj
1
S ¼ �ðT11/n þ T12/gÞj

2
S ;

FE ¼ �ðT12/n þ T22/gÞj
2
E ¼ �ðT12/n þ T22/gÞj

3
E ;

FW ¼ �ðT12/n þ T22/gÞj
1
W ¼ �ðT12/n þ T22/gÞj

4
W

ð14Þ
The above system of Eq. (14) is then written as the linear system
F ¼ ALUf þ BLUv ¼ ARUf þ BRUv; ð15Þ
where F = (FN, FS, FE, FW)T are the fluxes defined in the dual-cell and Uf = (/N, /S, /E, /W)T are the interface pressures. Sim-
ilarly Uv = (/1, /2, /3, /4)T are the cell centred pressures. Thus the four interface pressures are expressed in terms of the
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four cell-centred pressures. Using Eq. (15), Uf is now expressed in terms of Uv to obtain the dual-cell flux and coefficient
matrix
F ¼ ðALðAL � ARÞ�1ðBR � BLÞ þ BLÞUv: ð16Þ
Thus the cell-face pressures are eliminated from the flux by being determined locally in terms of the cell-centred pressures in
a preprocessing step, avoiding introduction of the interface pressure equations into the assembled discretization matrix. Eq.
(16) can also be written as
AF ¼ �DUv; ð17Þ
where the entries of matrix A are accumulated inverse tensor elements and DUv = (/21, /32, /34, /41)T are the differences of
cell-centred pressures, where e.g. /21=/2-/1. Consistency of the formulation follows from Eq. (17) which shows that flux is
zero for constant potential.

The relationship between CVD(MPFA) and the mixed method, first presented in [4] for q = 1 (and used in a convergence
proof [40]) hinges on Eq. (17). A novel mixed method with similar properties and proven convergence is presented in [19].
The above system of Eq. (17) also represents the generalisation of the standard flux with harmonic coefficients to general
elements with families of schemes defined by quadrature point q, see [4,8] for details. Although the physical space families
do not posses symmetric discretization matrices for arbitrary quadrilaterals they are positive definite subject to discrete
ellipticity of the symmetric part of the tensor [8]. However transform space (cell and sub-cell) formulations that are sym-
metric positive definite are presented in [3,5,6,8]. Flux continuity in the case of a general-tensor is obtained while maintain-
ing the standard single degree of freedom per cell. Since the continuity equations depend on both /n and /g (unless a
diagonal tensor is assumed with cell-face midpoint quadrature resulting in a 2-point flux), the interface pressures
Uf = (/N, /S, /E, /W)T are locally coupled and each group of four interface pressures is determined simultaneously in terms
of the group of four cell-centred pressures whose union contains the continuity positions. Finally for a structured grid the
scheme is defined by
Fiþ1=2;j � Fi�1=2;j þ Fi;jþ1=2 � Fi;j�1=2 ¼ M; ð18Þ
where i, j are the integer coordinates of the central quadrilateral cell, Fig. 1 and
Fiþ1=2;j ¼ FSiþ1=2;jþ1=2
þ FNiþ1=2;j�1=2

;

Fi;jþ1=2 ¼ FEi�1=2;jþ1=2
þ FWiþ1=2;jþ1=2

;
ð19Þ
where i + 1/2, j + 1/2 denote the ‘‘integer” coordinates of the top right hand side dual-cell centred on vertex V3, Fig. 3. The
unstructured formulation is presented in, e.g. [4].

In later sections an M-matrix analysis will be presented for a spatially constant full-tensor field. The discrete family
scheme coefficients for the point-wise continuous triangle pressure support (TPS) schemes are presented in Table 1 for a spa-
tially constant full-tensor field where the numbering of coefficients is indicated in Fig. 4.

For a spatially constant tensor the above family of schemes can be related to a simpler family of CVFE schemes given be-
low. This will prove useful in unwrapping some of the underlying properties of the above schemes.

4. CVFE

The purpose of this section is to introduce an approximation framework that is highly influential within the development
of the new full pressure continuity family of schemes. The family of symmetric positive definite control-volume finite ele-
ment (CVFE) full-tensor schemes was first presented in [2], with further properties in [34]. A comparative formalism of the
control-volume distributed CVD(MPFA) point-wise continuous family and the CVFE family is also included in [7]. The CVFE
framework is quite transparent for spatially constant permeability coefficients and includes all possible single parameter lo-
cally conservative constant coefficient 9-point diagonal and full-tensor schemes. For constant coefficients the flux-continu-
ous schemes can be mapped onto the more transparent control-volume finite element CVFE 9-point framework. Such a
mapping was demonstrated in [3] for the family of general tensor schemes as a function g = g(q), where g is a CVFE family
basis function parameterization and q is the flux-continuous quadrature parameterization. A diagram illustrating the vari-
ations of q and g is given in Fig. 6. The mapping facilitated the M-matrix analysis of the CVD(MPFA) methods [1,3] and links
to the cell-wise CVFE M-matrix analysis in [2]. This approach is expanded upon here in performing an M-matrix analysis of
the new full pressure continuity schemes.

The family of quadrilateral CVFE fluxes is defined over a primal grid cell if a cell-vertex formulation is employed and is
defined over the primal dual-cell if a cell-centred formulation is employed. The CVFE fluxes are derived from a bilinear
approximation of pressure and position vector over the cell (or dual-cell) with
/ ¼ ð1� nÞð1� gÞ/1 þ nð1� gÞ/2 þ ng/3 þ ð1� nÞg/4; ð20Þ
r ¼ ð1� nÞð1� gÞr1 þ nð1� gÞr2 þ ngr3 þ ð1� nÞgr4; ð21Þ
where 0 6 n, g 6 1 are the local master element coordinates. The resulting fluxes are given by



Table 1
q-Family (TPS) coefficients for constant tensor field

Integer coordinates Coefficients Full tensor

i, j M11 2(T11 + T22) � 2(T11 + T22)(aT + bTE)
i + 1,j M12 �T11 + (T11 + T22)(aT + bTE)
i + 1,j + 1 M13 � 1

2 ðT11 þ T22ÞðaT þ bT EÞ � T12
2

i, j + 1 M14 �T22 + (T11 + T22)(aT + bTE)
i � 1,j + 1 M15 � 1

2 ðT11 þ T22ÞðaT þ bT EÞ þ T12
2

i � 1,j M16 �T11 + (T11 + T22)(aT + bTE)
i � 1,j � 1 M17 � 1

2 ðT11 þ T22ÞðaT þ bT EÞ � T12
2

i, j � 1 M18 �T22 + (T11 + T22)(aT + bTE)
i + 1,j � 1 M19 � 1

2 ðT11 þ T22ÞðaT þ bT EÞ þ T12
2

It is understood that aT ¼ ð1�qÞ
2ð2�qÞ ;bT ¼ 1

2ð2�qÞ and E ¼ T2
12

T11 T22
. Here E is a measure of ellipticity and it follows that E 6 1.

97 8

35 4

26 1

Fig. 4. Numbering of approximation support nodes (stencil).
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Fig. 5. (a) Local CVFE coordinate system. (b) Local CVFE fluxes.
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FN ¼ �
1
2
ðT11ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ T12ðð/4 � /1Þð1� nÞ þ ð/3 � /2ÞnÞ;

FS ¼ �
1
2
ðT11ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ T12ðð/4 � /1Þð1� nÞ þ ð/3 � /2ÞnÞ;

FE ¼ �
1
2
ðT12ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ T22ðð/4 � /1Þð1� nÞ þ ð/3 � /2ÞnÞ;

FW ¼ �
1
2
ðT12ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ T22ðð/4 � /1Þð1� nÞ þ ð/3 � /2ÞnÞ;

ð22Þ
where it is understood that each flux can have its own local coordinates, e.g., FS = FS(nS, gS). The range over which each flux is
defined is given in Table A.
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Fig. 6. (a) Variation of q for TPS (b) Variation of ~g for FPS and g for CVFE.

Table A
CVFE fluxes

Flux n g

FN
1
2

1
2 < g 6 1

FS
1
2 0 6 g < 1

2
FE

1
2 < n 6 1 1

2
FW 0 6 n < 1

2
1
2
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In this paper we focus on a single parametric family of schemes. For constant coefficients, the correspondence between
the flux-continuous CVD schemes and CVFE schemes is understood through n = g = g(q). The N, S, E, W fluxes correspond with
the parametric definition of the 4 control-volume sub-faces that are inside the cell. For example, FS is defined at a point on
the sub-cell control-volume subface Fig. 5, where nS = 1/2. Similarly FE is defined on the adjoining control-volume subface
Fig. 5, where gE = 1/2 so that
FS ¼ �
1
2

T11ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ
1
2

T12ðð/4 � /1Þ þ ð/3 � /2ÞÞ
� �

;

FE ¼ �
1
2

1
2

T12ðð/2 � /1Þ þ ð/3 � /4ÞÞ þ T22ðð/4 � /1Þð1� nÞ þ ð/3 � /2ÞnÞ
� �

;

ð23Þ
where the parameter range is defined in Table A with n = g, double parameter families (n 6¼ g) will be presented in a future
report. The analysis is simplified by normalizing the flux parameter range by using the same variable g and the same param-
eter range ð0 6 g < 1

2Þ for all fluxes and, e.g., the flux pair FS, FE are given by
FS ¼ �
1
2

T11ðð/2 � /1Þð1� gÞ þ ð/3 � /4ÞgÞ þ
1
2

T12ðð/4 � /1Þ þ ð/3 � /2ÞÞ
� �

;

FE ¼ �
1
2

1
2

T12ðð/2 � /1Þ þ ð/3 � /4ÞÞ þ T22ðð/4 � /1Þgþ ð/3 � /2Þð1� gÞÞ
� �

;

ð24Þ
where each flux is defined in it’s own local coordinate system and the base schemes of each flux parameterization now cor-
respond with g = 0. The 9-point scheme coefficients are listed in the CVFE Table 2 where the numbering of coefficients is
indicated in Fig. 4.

4.0.2. Flux-continuity and local conservation

We note that CVFE schemes are locally conservative, but not flux continuous; A flux-continuous finite-volume scheme is
locally conservative however the converse is not necessarily true and CVFE is a case in point. Of course CVFE is trivially flux-
continuous over the control-volume faces [2], but in the CVFE formulation key flux continuity is lacking across the interior
interfaces across which the permeability can be discontinuous in the general case. In the M-matrix analysis presented in this
paper, schemes are compared for the simplified case of a spatially constant full-tensor field.

5. Family of flux-continuous schemes with full pressure continuity

The family of flux-continuous schemes presented in Section 3 fulfills a number of desirable constraints. However, these
schemes are only continuous in pressure and flux in a point-wise sense. Here we introduce a new class of schemes which
have continuous pressure support over the entirety of each sub-face. This is achieved by introducing a further interface pres-
sure at the common corner of the four sub-cells as indicated in Fig. 7(a), i.e. at the common primal grid vertex if cell-centred



Table 2
CVFE Family coefficients for constant tensor field

Integer coordinates Coefficients Full tensor

i, j M11 2(T11 + T22) � 2g(T11 + T22)
i + 1,j M12 �T11 + g(T11 + T22)
i + 1,j + 1 M13 � 1

2 gðT11 þ T22Þ � 1
2 T12

i, j + 1 M14 �T22 + g(T11 + T22)
i � 1,j + 1 M15 � 1

2 gðT11 þ T22Þ þ 1
2 T12

i � 1,j M16 �T11 + g(T11 + T22)
i � 1,j � 1 M17 � 1

2 gðT11 þ T22Þ � 1
2 T12

i, j � 1 M18 �T22 + g(T11 + T22)
i + 1,j � 1 M19 � 1

2 gðT11 þ T22Þ þ 1
2 T12
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and at the centre of gravity of the primal-cell if the formulation is cell-vertex. This enables a bilinear support in pressure to
be introduced over each sub-cell so that full pressure continuity is achieved over the faces of each control-volume. The bilinear
support retains a degree of freedom in position of flux continuity on a subface, and is motivated in part by the generality of
the CVFE framework of Section 4, however it is emphasized here that the following schemes are designed to be flux-contin-
uous over the control-volume faces that separate the piecewise constant variation in permeability field, leading to a new
family of flux-continuous schemes with full pressure support FPS.

The extra degree of freedom in pressure connecting the four sub-cells of the dual-cell requires an additional constraint
equation per dual-cell. Here we employ a similar approach to that of [35] and solve for the additional degree of freedom
by imposing the discrete integral form of Eq. (1) to hold over the dual-cell centre. For incompressible flow away from a
source/sink this effectively ensures that the dual-cell is divergence free. In order to define the additional dual-cell divergence
approximation an auxiliary control-volume surrounding the dual-cell centre is introduced as indicated by any of the dot-
dashed lines in Fig. 7(b). Details for the cell-centred formulation follow below.

5.1. Family of CVD(MPFA) full pressure continuity schemes – quadrature parameterization

In this formulation the lower-case indices (n, s, e, w) indicate the mid-points of the primal grid cell faces, that are con-
nected to the dual-cell mid-point m forming the interior sub-cell faces. After introduction of a further interface pressure
at the common corner m of the four sub-cells (i.e. at the dual-cell centre) indicated in Figs. 7, 8, the set of local interface pres-
sures to be determined over the dual-cell is given by Uf = (/n, /s, /e, /w, /m)T. A sub-cell bilinear approximation of pressure
and position vector is introduced locally over each sub-cell with local parametric coordinates ð0 6 ~n; ~g 6 1Þ, from which
approximate derivatives are derived over each sub-cell. For example over sub-cell 1 Fig. 7(a), (with corners labeled anti-
clockwise (1, s, m, w)) we obtain
Fig. 7.
auxiliar
/~n ¼ ð1� ~gÞð/s � /1Þ þ ~gð/m � /wÞ;
/~g ¼ ð1� ~nÞð/w � /1Þ þ ~nð/m � /sÞ;

ð25Þ
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r~n ¼ ð1� ~gÞðrs � r1Þ þ ~gðrm � rwÞ;
r~g ¼ ð1� ~nÞðrw � r1Þ þ ~nðrm � rsÞ:

ð26Þ
As in the TPS formulation upper-case N, S, E, W define the flux positions of the family of FPS schemes on the control-vol-
ume sub-faces. However, unlike the TPS formulation the FPS interface pressures (/n, /s, /e, /w) remain attached to the
mid-points of the primal grid cell faces. The flux continuity conditions of Eq. (14) are now redefined using the above
approximate derivatives of / and r given in Eqs. (25) and (26) which replace that of Eqs. (9) and (10). The family of
schemes is defined by a symmetric position of flux continuity parameterized by the local basis function ~g, with respect
to pairs of sub-cell faces. The FPS flux position is later expressed in terms of the CVFE parameter g where g ¼ ~g=2 (shown
later) and with respect to the TPS parameter q, with g = (1 � q)/2 so that the interval of FPS flux integration 0 6 g < 1

2 can
be readily compared with CVFE and TPS, c.f. Fig. 6. This aids the comparison between TPS, CVFE and FPS schemes pre-
sented below. To clarify notation, for example FS will denote a flux at a quadrature point that may either coincide with s
or be between s and m, but never coincides with m, i.e. 0 6 ~g < 1 or 1 P q > 0 or equivalently 0 6 g < 1

2. The additional
discrete divergence condition for determining /m is added to the four interface continuity conditions leading to the local
algebraic system
FN ¼ �ðT11/~n þ T12/~gÞj
3
N ¼ �ðT11/~n þ T12/~gÞj

4
N ;

FS ¼ �ðT11/~n þ T12/~gÞj
1
S ¼ �ðT11/~n þ T12/~gÞj

2
S ;

FE ¼ �ðT12/~n þ T22/~gÞj
2
E ¼ �ðT12/~n þ T22/~gÞj

3
E ;

FW ¼ �ðT12/~n þ T22/~gÞj
1
W ¼ �ðT12/~n þ T22/~gÞj

4
W ;

�
X
oXAUX

ðKrUÞ � n̂Ds ¼ 0:

ð27Þ
Here we illustrate discrete flux continuity for the second equation of Eq. (27), at a point S between s and m with
FS ¼ �ðT1
11ðð1� ~gÞð/s � /1Þ þ ~gð/m � /wÞ þ T1

12ð/m � /sÞÞ

¼ �ðT2
11ðð1� ~gÞð/2 � /sÞ þ ~gð/e � /mÞ þ T2

12ð/m � /sÞÞ; ð28Þ
where for the left hand side flux, approximations of /~n and /~g are given by Eq. (25). Analogous sub-cell approximations are
constructed for each of the flux continuity conditions in Eq. (27). The alternative q parameterization of flux continuity is gi-
ven by
FS ¼ �ðT1
11ðqð/s � /1Þ þ ð1� qÞð/m � /wÞ þ T1

12ð/m � /sÞÞ

¼ �ðT2
11ðqð/2 � /sÞ þ ð1� qÞð/e � /mÞ þ T2

12ð/m � /sÞÞ: ð29Þ
Referring now to the auxiliary control-volume (perimeter shown dot-dashed) centred on the auxiliary node m of Fig. 8
the auxiliary control-volume is comprised of 4 sub-subcells one in each sub-cell. The discrete approximation of the 5th
equation in the set of Eq. (27) which represents the local auxiliary divergence condition is constructed in an analogous
procedure to that of the primary control-volume approximation of divergence, with eight fluxes one per subface of the
auxiliary control-volume. Since the auxiliary control-volume faces lie inside the primary control-volumes where perme-
ability is piecewise constant, the auxiliary control-volume approximation is based on the CVFE formulation. The auxiliary
control-volume fluxes are parameterized with 1 P p > 0, where p is a free parameter that defines the local auxiliary flux
quadrature, although p = q is one possibility. Note that the auxiliary control-volume can lie in or on the dual-cell, the



Table 3
q-Family (FPS) coefficients for constant tensor field

Integer coordinates Coefficients Full tensor

i, j M11 2(T11 + T22) � 2(T11 + T22)(aF + bFER)
i + 1,j M12 �T11 + (T11 + T22)(aF + bFER)
i + 1,j + 1 M13 � 1

2 ðT11 þ T22ÞðaF þ bF ERÞ � T12
2

i, j + 1 M14 �T22 + (T11 + T22)(aF + bFER)
i � 1,j + 1 M15 � 1

2 ðT11 þ T22ÞðaF þ bF ERÞ þ T12
2

i � 1,j M16 �T11 + (T11 + T22)(aF + bFER)
i � 1,j � 1 M17 � 1

2 ðT11 þ T22ÞðaF þ bF ERÞ � T12
2

i, j � 1 M18 �T22 + (T11 + T22)(aF + bFER)
i + 1,j � 1 M19 � 1

2 ðT11 þ T22ÞðaF þ bF ERÞ þ T12
2

It is understood that aF ¼ ð1�qÞ
2 ; bF ¼ cq

2ðqþpc�cÞ ;R ¼
HM
AR

which is the ratio of the harmonic mean to arithmetic mean of diagonal coefficients T11, T22 where
HM ¼ 2 T11 T22

T11þT22
;AR ¼ T11þT22

2 and therefore R 6 1, and as before (for the TPS scheme) E ¼ T2
12

T11 T22
is an ellipticity measure and it follows that ER 6 1.
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actual size of the auxiliary control-volume is a further degree of freedom to be chosen within the scheme, and is param-
eterized by the variable 1 P c > 0, where c = 1 corresponds to an auxiliary control-volume that matches the dual-cell and
as c ? 0 the auxiliary control-volume tends to zero. The primal control-volume and auxiliary control-volume fluxes are
indicated in Fig. 8, with solid arrows for primal fluxes and hollow arrows for auxiliary fluxes. The auxiliary fluxes have
super-fixes indicating the auxiliary sub-cell and compass suffices indicating position relative to the primal sub-cell in
which they are defined. For example referring again to sub-cell 1 (corners 1, s, m, w), the auxiliary control-volume flux
F1

N is defined on the top left sub-subcell face by
F1
N ¼ cð�T1

11ðcð1� pÞð/s � /1Þ þ ð1� cð1� pÞÞð/m � /wÞÞ � T1
12ðcð/w � /1Þ þ ð1� cÞð/m � /sÞÞÞ ð30Þ
which is a function of the auxiliary quadrature and control-volume size parameters p and c respectively and the tensor here
is defined with respect to the auxiliary sub-cell. In the general case this formulation leads to a multiple family of schemes
which are functions of the main flux continuity point parameter q, the auxiliary control-volume flux parameter p and aux-
iliary control-volume size parameter c.

The degrees of freedom of the five equation system Eq. (27) are the five interface pressures Uf = (/n, /s, /e, /w, /m)T and
the four primal cell-centred pressures Uc = (/1, /2, /3, /4)T. The system of equations is rearranged in a similar form to Eq. (15)
viz
F ¼ A5X5
L Uf þ B5X4

L Uc ¼ A5X5
R Uf þ B5X4

R Uc ð31Þ
where A5X5
L ;A5X5

R are 5X5 matrices and B5X4
L ;B5X4

R are 5X4 matrices. Since we only require the four fluxes, we let A4X5
L denote the

first four rows of matrix A5X5
L and B4X4

L denote the first four rows of matrix B5X4
L .

The dependence on Uf is removed via Eq. (31) and the continuous fluxes of the families of FPS schemes are now expressed
in terms of Uc with
F ¼ ðA4X5
L ðA

5X5
L � A5X5

R Þ
�1ðB5X4

R � B5X4
L Þ þ B4X4

L ÞUc
The fluxes are then assembled and discrete divergence is formed as in Eqs. (18) and (19). For a spatially constant tensor field
on a logically rectangular grid the family of full pressure support (FPS) schemes reduce to 9-point schemes with coefficients
given in Table 3.

6. Positivity and M-matrices

The families of flux-continuous schemes TPS and FPS both result in a discrete matrix which forms 5–9 row entries in 2D
and 7–27 row entries in 3D on a structured grid. The discrete systems can be written as
A/ ¼ b; ð32Þ
where A is the discrete matrix operator, / is the unknown pressure and b is the source term. Ideally the discrete system of Eq.
(32) should be monotone, and satisfy a maximum principle that is analogous to that of the continuous counterpart of the dis-
crete problem and hence ensuring that the numerical solution is free from nonphysical oscillations. The discrete matrix oper-
ator A is monotone if and only if A is non-singular and it obeys the following condition [37]
A�1 P O; ð33Þ
where O is a zero matrix. While a monotone discretization matrix ensures that a non-negative source and boundary data
yields a non-negative pressure field, it has not been proven that a monotone discretization matrix will prevent discrete spu-
rious local extrema occurring in the discrete solution of the general tensor pressure equation. A sufficient condition for a
maximum principle (which can ensure that no spurious extrema occur in the discrete solution) is that A is an M �matrix,
i.e. monotone or positive definite with ai, j 6 0, i 6¼ j.
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6.0.1. Conditions for an M-matrix

The following set of conditions are often easier to verify;
A is an M-matrix if
ai;i > 0 8i;

ai;j 6 0 8i; j; i 6¼ j;

Rjai;j P 0 8i:

ð34Þ
In addition A must be either strictly diagonally dominant (strict inequality in the latter of Eq. (34)) or weakly diagonally
dominant with strict inequality for at least one row, A must also be irreducible.

Use of the term monotonicity is too strong when describing multi-dimensional solutions, as the local solution can often
have a saddle point in structure. For example, for a locally constant tensor field (and zero source) Eq. (1) reduces to
�eK 11/~x~x � eK 22/~y~y ¼ 0 with respect to principal axes ð~x; ~yÞ, so that /~x~x ¼ �eK 22/~y~y=

eK 11, from which it follows that /~x~x/~y~y < 0
leading to the condition for a saddle point with /2

~x~y P /~x~x/~y~y. Here we introduce the term positivity as defined below.

6.1. Positivity

For the ith equation of Eq. (32), away from any source or sink, it follows that
/i ¼ �
1
aii

X
jði 6¼jÞ

aij/j: ð35Þ
If A is an M-matrix, by consistency for a constant potential field it follows from Eq. (35) that each non-specified /i is a convex
average of its connecting neighbours. Thus each /i is bounded between the maximum and minimum of connecting neigh-
bours, such a condition is consistent with the absence of spurious oscillations and defines a local discrete maximum prin-
ciple. When A is an M-matrix Eq. (35) defines a positive scheme where the weights of /j are positive and sum to unity.

The first M-matrix analysis for schemes of this type is presented in [1–3], where conditions for nine-node flux-continuous
schemes to be an M-Matrix are
minðT1;1; T2;2ÞP gðT1;1 þ T2;2ÞP jT1;2j ð36Þ
and g is a function of quadrature point. One of the essential conditions here is that
jT1;2j 6 minðT1;1; T2;2Þ; ð37Þ
which is only sufficient for ellipticity [1] and therefore quite limiting on the range of tensors that are applicable. Tensors that
are elliptic with
T2
1;2 6 T1;1T2;2 ð38Þ
and are such that jT1,2j > min(T1,1, T2,2) violate the M-Matrix criteria of Eq. (36) and expose the M-Matrix limit.
Numerical examples are presented in the results section where the maximum principle is violated and in these cases the

methods do not possess an M-matrix or a monotone matrix. Examples are presented for both TPS and FPS flux-continuous
finite-volume CVD(MPFA) schemes.

6.2. Related work on stability

In many cases discrete stable solutions of second order elliptic full tensor partial differential equations that are free of
spurious oscillations can be computed with schemes that do not necessarily obey the M-matrix conditions needed to ensure
a maximum principle. In [31] rather than an M-matrix, a monotone matrix is pursued for monotonicity. The authors present
a detailed analysis to derive the conditions that are sufficient for the matrix to be monotone. Plots of monotone matrix re-
gions are given in the tensor coefficient plane [31] expressed in terms of the minimum diagonal tensor coefficient versus the
absolute off-diagonal tensor coefficient, normalized with respect to the maximum diagonal tensor coefficient. While this is
an interesting viewpoint, as discussed above, it has not been proven that a monotone matrix will ensure a discrete solution is
obtained without spurious oscillations. Such a solution can be obtained if the matrix is an M-matrix. A monotone matrix is an
M-matrix if the off-diagonal coefficients are not positive and thus a monotone matrix is only part of the condition required
for a discrete maximum principle as discussed above. From the monotone matrix conditions together with the negative
inequality conditions for off-diagonals (i.e. M-matrix conditions), [31] goes on to arrive at the same M-matrix bounds as first
presented in [2,3] (in slightly different notation). An optimal scheme is also identified which corresponds to the quadrature
point defined by Eq. (46), first presented in [3]. We illustrate the M-matrix conditions of the schemes presented here in the
tensor coefficient plane further below.

However, the major challenge to all schemes occurs when the crucial sufficient M-matrix condition of Eq. (37) is violated,
i.e. when ðminðT1;1; T2;2Þ2 < T2

1;2 6 T1;1T2;2Þ. In this case the schemes do not have M-matrices or monotone matrices. Four
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types of discretization have been proposed to date to overcome this limitation; The first two involve constructing the dis-
crete approximation based on that resulting from the optimal point defined by Eq. (46), either by special case triangulation
according to anisotropy angle [33] or by special case construction also according to anisotropy [41]. The second two ap-
proaches involve non-linear flux approximation, either by flux-splitting with an imposed maximum principle [10,11] or
by a local positivity preserving approximation [42]. The approach adopted here involves using the optimal point of Eq.
(46) as a quadrature point. The analysis below shows that the optimal quadrature point can be selected by the FPS and CVFE
families for all elliptic tensors, but when strong full-tensor anisotropy is present the optimal point is outside the TPS quad-
rature range.

First the relationship between the new full pressure support FPS family, the original triangle pressure support (TPS) fam-
ily and control-volume finite element (CVFE) family is presented for the case of spatially constant full-tensor coefficients.

7. Relationship between TPS, FPS and CVFE for a spatially constant tensor

A correspondence (or mapping) between the flux-continuous CVD family coefficients and the CVFE family coefficients is
now established for a spatially constant general full-tensor field. By definition since the general full-tensor is assumed to be
spatially constant, there is no need to take account of discontinuous coefficients (fluxes are automatically continuous) and
the analysis simplifies considerably. However the construction of triangle pressure support (TPS) and full pressure support
(FPS) in the case of constant tensor coefficients still yields families of schemes with distinct properties. The mapping be-
tween schemes enables us to understand important consequences of the different discretizations, basically from a single
analysis which is verified by practical examples.

In this case the CVD(MPFA) flux-continuous (TPS) and (FPS) schemes take the same form as the family of CVFE schemes.
For a spatially constant full tensor the schemes take the common form
� T11ð/iþ1;j � 2/i;j þ /i�1;jÞ þ T22ð/i;jþ1 � 2/i;j þ /i;j�1Þ þ
T12

2
ð/iþ1;jþ1 � /i�1;jþ1 þ /i�1;j�1 � /iþ1;jþ1Þ

�
þg

2
ðT11 þ T22Þð4/i;j � 2ð/iþ1;j þ /i�1;j þ /i;jþ1 þ /i;j�1Þ þ /iþ1;jþ1 þ /i�1;jþ1 þ /i�1;j�1 þ /iþ1;j�1Þ

�
; ð39Þ
where the latter difference term of Eq. (39) multiplying g
2 ðT11 þ T22Þ is a mixed fourth derivative approximation. The nature

of g in this term governs the actual difference between the schemes for a constant general full-tensor field. The coefficients of
the respective TPS and FPS families are given in Tables 1 and 3 above, for a spatially constant full-tensor field. The coefficients
of the CVFE family are given in Table 2. Inspection of Eq. (39) and comparison between Tables 1–3 shows that for a constant
tensor the flux-continuous schemes map on to the CVFE scheme for specific functional definitions of g = g(q) as shown below.
We also note that since the CVFE family is symmetric positive definite see Appendix 1, it follows from the mappings below
that the TPS and FPS families of schemes are therefore symmetric positive definite for spatially constant elliptic tensor coef-
ficients for g < 1/2.

7.1. Triangle pressure support TPS

For the TPS schemes (compare Tables 1 and 2) the mapping corresponds with g in the CVFE scheme defined by
gðqÞ ¼ aT þ bT E ¼ ð1� qÞ
2ð2� qÞ þ

1
2ð2� qÞ E; ð40Þ
where aT, bT and E are defined in Section 3 and from which it follows that aT + bTE 6 1/2.

7.2. Full pressure support FPS

For the FPS schemes (compare Tables 3 and 2) the mapping corresponds with g in the CVFE scheme defined by
gðqÞ ¼ aF þ bF ER ¼ ð1� qÞ
2

þ cq
2ðqþ pc � cÞ ER; ð41Þ
where aF, bF and ER are defined in Section 5 and from which it follows that aF + bFER 6 1/2. Thus both schemes are within the
range of the CVFE g family. The g family embodies all single parameter 9-point schemes, reduced support schemes and the
subordinate 7-point schemes. This is made clear below. Therefore an M-matrix analysis of the CVFE family with coefficients
in Table 2 is directly applicable to the TPS and FPS families with coefficients of Tables 1 and 3 via the relationship given by
Eqs. (40) and (41) and is performed below.

7.3. Cell-wise M-matrix conditions

An M-matrix test is easily conducted by considering cell-wise (or dual-cell for cell-centred) assembly of fluxes and per-
forming a cell-wise M-matrix analysis following [2]. We note that for CVFE permeability is piecewise constant per-cell so
that for piecewise constant T this analysis applies to the fully discrete CVFE method, but the relationship to TPS and FPS only
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holds for a spatially constant field. Here we perform a cell-wise M-matrix test for the family (Fig. 10), where, e.g., for the
control-volume centred on local node 2, the local net flux contribution to the global matrix is given by �FS + FE. Gathering
coefficients of each /j, j = 1, . . . ,4 the net flux is written such that
Fig. 9.
pt sche
� FS þ FE ¼�
1
2
ð/1ðT11 � ðT11 þ T22ÞgÞ �/2ððT11 þ T22Þð1�gÞ � T12Þ þ/3ðT22 � ðT11 þ T22ÞgÞ þ/4ððT11 þ T22Þg� T12ÞÞ:

ð42Þ
Next the conditions for Eq. (34) to hold are tested. First conditions for non-positive off-diagonal coefficients are derived. The
/4 coefficient is non-positive if
jT12j 6 gðT11 þ T22Þ ð43Þ
and the coefficients of /1 and /3 are non-positive if
gðT11 þ T22Þ 6minðT11; T22Þ: ð44Þ
Thus taking the inequalities together we obtain
jT12j 6 gðT11 þ T22Þ 6 minðT11; T22Þ ð45Þ
from which it follows that the diagonal coefficient of /2 is positive since 0 6 g < 1
2. Finally since the positive coefficient of /2

is equal to the sum of absolute values of the off-diagonal coefficients, the latter inequality of Eq. (34) is confirmed. Strict
inequality is obtained when a Dirichlet condition is imposed. We note that Eq. (45) is identical to Eq. (36) which also con-
firms the sufficient conditions for a single family of M-matrix full-tensor schemes, cf. [3]. The M-matrix conditions of Eq. (45)
can also be seen to be sufficient by inspection of Table 2, where the left-hand inequality is sufficient for M13, M15, M17, M19 to
each be non-positive and the right-hand inequality is sufficient for M12, M14, M16, M18 to each be non-positive and for diag-
onal dominance with M11 > 0. These conditions now establish the following theorem:

Conditional M-matrix: Any single parameter g—family of consistent locally conservative schemes on or within the 9-point sten-
cil applied to a locally constant full-tensor field can only provide a conditional M-matrix subject to Eq. (45). Note: FPS is exact for
piecewise linear and bilinear fields, since the pressure basis functions are piecewise bilinear.

For example, the inequality of Eq. (45) shows that if a locally constant full-tensor is present and the basic scheme is em-
ployed, i.e. g = 0 then the M-matrix condition is unconditionally violated. However, if g 6¼ 0, it is possible to still obtain an M-
matrix provided that Eq. (45) is satisfied, which places clear limitations on the range of full-tensor coefficients permissible.
Also since g = 1/3 corresponds the Galerkin finite element method [34] it follows that the well known Galerkin method is
also subject to a conditional M-matrix. Examples will be presented in the results section.

7.4. Variable support reduction and 7-point schemes

As noted in [3], if we choose quadrature points with
g ¼ jT12j=ðT11 þ T22Þ ð46Þ
then an M-matrix is obtained subject to a sufficient condition for ellipticity, i.e.
jT12j 6minðT11; T22Þ ð47Þ
9
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Table 4
Optimal support g = jT12j/(T11 + T22) (FPS) coefficients for constant tensor field

Integer coordinates Coefficients Full tensor

i, j M11 2(T11 + T22) � 2jT12j)
i + 1,j M12 �T11 + jT12j
i + 1,j + 1 M13 � 1

2 ðjT12j þ T12Þ
i, j + 1 M14 �T22 + jT12j
i � 1,j + 1 M15 � 1

2 ðjT12j � T12Þ
i � 1,j M16 �T11 + jT12j
i � 1,j � 1 M17 � 1

2 ðjT12j þ T12Þ
i, j � 1 M18 �T22 + jT12j
i + 1,j � 1 M19 � 1

2 ðjT12j � T12Þ

2

3

1

4

K22 K11

a
2

3

1

4

K11

K22

b
Fig. 10. (a) Net positive T12 over a dual-cell: Optimal support scheme for control-volume at 2 uses nodes 1, 2, 3 (b) Net negative T12 over a dual-cell:
Optimal support scheme for control-volume at 1 uses nodes 4, 1, 2.
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giving the upper limit on the tensor cross-term. Upon examination of Eq. (42) we see that choosing the FPS (or equivalent
CVFE) quadrature point of Eq. (46) naturally reduces the coefficient of local node 4 to zero if T12 > 0, Fig. 10a. This is also clear
from the CVFE Table 2 centred on node 1. If the local tensor field has a positive cross-term for each contributing cell the net
effect is to reduce a 9-point scheme to a 7-point (triangle) scheme with upward ‘‘+ve” support as indicated in Fig. 9(a), also
by CVFE Table 2 (for a constant tensor) M15 = M19 = 0 while the other off-diagonals are non-positive subject to Eq. (47). Con-
versely a similar analysis for the net flux contribution at node 1 reveals that if T12 < 0 a downward ‘‘-ve” triangle support” is
obtained Fig. 9(b), again this is also verified by inspection of the CVFE Table 2 where in this case M13 = M17 = 0 when Eq. (46)
holds. We shall refer to Eq. (46) as the optimal support condition. We also note that Eq. (47) is consistent with the triangular
grid M-matrix conditions presented in [5,6], and defines the M-matrix upper limit for the cross coefficient jT12j.

In general the choice of quadrature defined by Eq. (46) leading to (optimal support) yields a scheme that will select a var-
iable support Fig. 10(a) and (b) that favours the local tensor anisotropy orientation (sign of the cross-terms) and can vary
between a 9-point scheme to a seven point scheme (on a structured grid) and maintain an M-matrix provided Eq. (47) holds.
The general condition for 9-point schemes to reduce their support (seven point schemes of this type only result if cross terms
are of the same sign for all contributing cells) depends upon g being chosen such that Eq. (46) holds. The resulting scheme
with quadrature defined by Eq. (46) leading to optimal support is given in Table 4 for a spatially constant full-tensor coeffi-
cient field.

As can be seen from Table 4, the optimal support scheme relies upon exact algebraic cancelation for actual reduced sup-
port. Otherwise when coefficients vary over the sub-cells algebraic cancelation is unlikely, optimal support is then only
achieved either by anisotropy angle favouring triangulation [33] or by special case construction according to anisotropy [41].

8. TPS versus FPS quadrature range

The key advantage of full pressure support (FPS) over the triangle pressure support (TPS) formulation becomes apparent
when considering the range of validity of the quadrature points. The family of CVFE schemes which includes all spatially con-
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stant full-tensor 9-point schemes and their subsets are well defined for 0 6 g < 1
2, or alternatively in terms of the common

parameterization q defined above, for 1 P q > 0.

8.1. TPS

The TPS g(q) has a non-linear variation with respect to q, c.f. Eq. (40) and Table 1. At the ends of the [0,1] q-interval
for TPS
gð0Þ ¼ 1
4
ð1þ EÞ;

gð1Þ ¼ 1
2

E
ð48Þ
which reveals that this scheme has a reduced quadrature range for the general case. From Eq. (40) dg/dq 6 0 and it follows
that g(0) and g(1) are the respective maximum and minimum values of g for TPS. For example if cross-terms vanish with
E = 0 then the maximum range is gð0Þ ¼ 1

4, where as gCVFE <
1
2. Thus the CVD TPS schemes do not include all possible 9-point

schemes, allowing only half the range in the diagonal tensor case. Also for E 6¼ 0 the minimum end of the range below E/2 to
(g = 0) is excluded.

If Eq. (47) holds, then it follows from the maximum and minimum values of g (Eq. (48)) that a TPS M-matrix scheme
can be obtained and Eq. (46) can be employed to obtain optimal support for a limited range of tensor coefficients sat-
isfying Eq. (47). However, in contrast to the FPS family, due to the limited quadrature range of TPS for full-tensors with
strong anisotropy ratios where Eq. (47) is violated, the value of q required for Eq. (40) to equate to Eq. (46) is outside the
quadrature range when the optimal quadrature point of Eq. (46) is less than the minimum TPS quadrature g = E/2. This
occurs when
jT12j > 2T11T22=ðT11 þ T22Þ: ð49Þ
The latter inequality holds in three test cases presented in the results section.

8.2. FPS

In contrast for CVD FPS the end interval values are from Eq. (41) and Table 3
gð0Þ ¼ 1
2
;

gð1Þ ¼ c
2ð1þ pc � cÞ ER;

ð50Þ
which recovers the upper bound of 1/2 for maximum quadrature range for a diagonal or full-tensor. However from Eq.
(50) the lower bound g(1) only tends to zero if the auxiliary control-volume size tends to zero, which occurs in the limit
as c ? 0, showing the value of allowing the control-volume size to vary. Crucially the variation of FPS g(q) is essentially
linear in q for 1 P q > 0 provided that c is sufficiently small. From Eq. (41) as c ? 0 then gðqÞ ! ð1� qÞ=2 ¼ ~g=2 yielding
direct correspondence between FPS and the full family of CVFE schemes for spatially constant tensor coefficients, leading
to a quadrature range that embraces all classical single parameter nine-node schemes.

We have already noted that Eq. (46) leads to a reduced support scheme, and in particular yields a 7-point scheme if all
contributing cross-terms are of the same sign. In the general case Eq. (46) can be used to define g(q) locally over each sub-cell
cluster comprising a dual-cell, according to the local tensor variation. The local sign of the cross-terms over the dual-cell
determines the ultimate support of the FPS scheme. Thus Eq. (46) yields an example of an FPS scheme that self adapts
the support, in this case such that optimal support is naturally selected for any tensor, since by ellipticity jT12j /
(T11 + T22) 6 1/2. For small cross-terms, if T12 ? 0 the quadrature Eq. (46) defaults to zero yielding the basic diagonal-tensor
5-point operator.

Other M-matrix schemes that adapt the quadrature point according to the local tensor variation can also be defined by
choosing other values of g(q) that lie in the range defined by Eq. (45). For example choosing the right hand bound
g = min(T11, T22) /(T11 + T22) leads to another type of reduced support scheme (H/I support discussed below and see Appendix
2). Note here that the M-matrix conditions again reduce to Eq. (47) and g ? 0 as the anisotropy and/or grid aspect ratio
increases.

In the general case when the tensor varies over the dual-cell Fig. 2 a locally upscaled tensor is used to determine the quad-
rature point for the dual-cell, so that the range defined by Eq. (45) and any consequent choice of g(q) in the range will always
be based on a locally upscaled average tensor, here local 2 � 2 renormalization of [36] is used to define the 2 � 2 sub-cell
average tensor over the dual-cell. Consequently the optimal bound defined by Eq. (46) can only be defined with respect
to the local mean tensor of the dual-cell and will not necessarily have exact optimal support. If Eq. (47) holds, then FPS
may still have an M-matrix. If Eq. (47) is violated FPS does not have an M-matrix with respect to the mean tensor, but
the mean optimal quadrature point can still be employed. The effects and practical implications of this are considered below
in the section on quasi-positive schemes.
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8.3. M-matrix diagrams

Here we present illustrative M-matrix diagrams for FPS in the (x, y) plane where we let T22 = min(T11, T22) and define
x = jT12j/T11, y = T22/T11, so that 0 6 x, y 6 1. Due to the non-linear nature of the TPS quadrature point of Eq. (40) with respect
to x, y there is no linear correspondence between TPS and FPS in the (x, y) plane for a given value of q. Also, while any TPS g
quadrature point belongs to FPS, the converse is not true because FPS has the larger quadrature range. FPS M-matrix dia-
grams are shown for g = (0.25, 1/3, 0.45) in Fig. 11 and for the optimal point of Eq. (46) where g = x/(1 + y) in Fig. 15a (cor-
responding to y P x). The diagrams are composed of the bounds of the inequality conditions of Eq. (45).

9. Decoupled approximation

The quadrature point g = 1/2 is a singular point for the above CVFE, FPS and TPS approximations (see Tables 5 and 6).
Again as a consequence of the above relationships of Eqs. (40) and (41) for a spatially constant tenor field, we need only sub-
stitute g = 1/2 in the CVFE approximation to see the effect. Referring to Table 2 we obtain the scheme in Table 5.

We note that the resulting discretization permits the checker board solution, Table 6.
The solution is strongly oscillatory and decoupled, Fig. 12. This helps to explain the extreme sensitivity of the TPS scheme,

where for a highly anisotropic full-tensor, the ellipticity measure E ¼ T2
12=ðT11T22Þ tends to unity, for the example (below)

E = 0.99776, by Eq. (48) it follows that g(TPS) ? 1/2 for any value of q, resulting in an oscillatory decoupled solution. There-
fore for a highly anisotropic full-tensor violating the M-matrix condition, we may regard the TPS family as belonging to the
interval
1=2� �TPS < g 6 1=2; ð51Þ
where gDC = 1/2 � �TPS defines a cut-off limit above which decoupling takes place (suffix DC denotes decoupled). The precise
cut-off limit is at present undetermined, but a first estimate is obtained from the minimum of the TPS range with 1/
2 � �TPS � E/2.
Fig. 11. M-matrix zones for examples of g: (a) g ¼ 1
4. (b) g ¼ 1

3. (c) g = 0.45.



+c

+c -c +c

+c

+c

-c

-c -c

Fig. 12. Decoupled solution.

Table 5
CVFE coefficients for constant tensor field: g = 1/2

Integer coordinates Coefficients Full tensor

i, j M11 (T11 + T22)
i + 1,j M12

1
2 ðT22 � T11Þ

i + 1,j + 1 M13 � 1
4 ðT11 þ T22Þ � 1

2 T12

i, j + 1 M14
1
2 ðT11 � T22Þ

i � 1,j + 1 M15 � 1
4 ðT11 þ T22Þ þ 1

2 T12

i � 1,j M16
1
2 ðT22 � T11Þ

i � 1,j � 1 M17 � 1
4 ðT11 þ T22Þ � 1

2 T12

i, j � 1 M18
1
2 ðT11 � T22Þ

i + 1,j � 1 M19 � 1
4 ðT11 þ T22Þ þ 1

2 T12

Table 6
CVFE decoupled solution at g = 1/2

Integer coordinates /

i, j C
i + 1,j �C
i + 1,j + 1 C
i, j + 1 �C
i � 1,j + 1 C
i � 1,j �C
i � 1,j � 1 C
i, j � 1 �C
i + 1,j � 1 C

C is an arbitrary constant.
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10. Quasi-positive QM-matrices

The practical effects of this comparison in terms of benefit and validity of quadrature is seen in the results section. First
we return to the case of a spatially constant tensor. If the optimal quadrature point of Eq. (46) is chosen when the system has
no M-matrix (and the matrix is not monotone), i.e. when jT1,2j > min(T1,1, T2,2), then inspection of Table 4 shows that the ma-
trix coefficients M13, M15, M17, M19 still remain non-positive. For ellipticity we must have jT12j 6max(T11, T22) so that either
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M12 and M16 or M14 and M18 are non-positive. Without loss of generality, suppose that T11 = max(T11, T22), then under the
assumption of violation of Eq. (47) M12 and M16 will be non-positive and M14 and M18 will be positive. Therefore in this case,
only two off-diagonal coefficients violate the M-matrix conditions, which by symmetry of the matrix is the least number
possible.

Next we identify other quadrature points that lead to matrices with the minimum of only one unique positive off-diag-
onal coefficient that violates the M-matrix conditions. Note; in this case there are two offending off-diagonal coefficients by
symmetry. We shall refer to the resulting matrices as Quasi-Positive M-matrices or QM-matrices (the name is also motivated
in part by the essentially non-oscillatory solutions obtained with the schemes). By symmetry we only have to consider the
four coefficients M12, M13, M14, M15.

Returning to Table 2, we now consider general g where g < 1/2 and suppose T11 = max(T11, T22) with T12 > 0, it follows that
M12 and M13 are non-positive. Depending on the size of g it follows that M14 and M15 can change sign.

Case 1.0: Crucially if M14 6 0 it follows that g 6 T22/(T11 + T22), by the above supposition jT1,2j = T1,2 > T22 and it follows
that M15 > 0 and by symmetry M19 > 0.

Case 2.0: Conversely if we assume M15 6 0, then g P jT1,2j/(T11 + T22) and by the above supposition M14 > 0 and by sym-
metry M18 > 0.

By matrix symmetry it follows that in both cases 1 and 2, we obtain further QM-matrices where only 2 coefficients violate
the M-matrix conditions over the two intervals
0 6 g 6 T22=ðT11 þ T22Þ
jT1;2j=ðT11 þ T22Þ 6 g < 1=2� �TPS

ð52Þ
and where solutions are essentially free of spurious oscillations. The upper bound of 1/2 � �TPS in the second interval ensures
that g never enters the decoupled zone of Eq. (51), where the method can produce decoupled oscillatory solutions as shown
above. We note by inspection of M14 and M15 in Table 2, referring to the respective intervals of Eq. (52), as g decreases over
the first interval and as g increases over the second interval the offending positive coefficient increases in size in each case.
This shows that the schemes defined by the quadrature points
g ¼minðT11; T22Þ=ðT11 þ T22Þ; ð53Þ
g ¼ jT1;2j=ðT11 þ T22Þ ð54Þ
are both optimal over their respective intervals in the sense that they lead to matrices that are both the closest matrices to
M-matrices in pattern, with the minimum number (two due to symmetry) of off-diagonal coefficients that violate the M-ma-
trix conditions, and that the violating coefficients are minimized in magnitude at these points, subject to the constraint that
only one of the four unique off-diagonal coefficients is positive.

We shall denote the optimal quadrature points of Eqs. (53) and (54) by gHI and gOS respectively. The case gHI = min(T11,
T22)/(T11 + T22) leads to a reduced support scheme with H support when T22 = min(T11, T22) (with coefficients given in Appen-
dix 2) as indicated in Fig. 13a and alternatively if T11 = min(T11, T22) we obtain a scheme with I support as shown in Fig. 13b,
hence the general index HI. The optimal support (OS) point gOS = jT1,2j/(T11 + T22) is more attractive since this leads to optimal
support that favours the anisotropy of the problem, as discussed earlier and is found to yield improved results, as presented
below.
a b
Fig. 13. Stencil of H/I scheme. (a) H scheme (b) I scheme.
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Returning to the case where T22 = min(T11, T22), the interval
T22=ðT11 þ T22Þ < g < T12=ðT11 þ T22Þ ð55Þ
connects the above minimum positive coefficient intervals of Eq. (52). In this case two unique off-diagonal coefficients M14

and M15 are found to be positive. It is interesting to note that this interval is precisely the reverse of the M-matrix interval of
Eq. (45) and now contains the maximum number of offending coefficients, i.e. four by symmetry. However the four positive
coefficients are always bounded above by the maximum of the coefficients at the optimal points.

We next plot the coefficients M12, M13, M14, M15 against g in Fig. 14, for an example where T11 = max(T11, T22) and T12 > 0.
In this example
T ¼ ½2464:360020;1148:683643;1148:683643;536:6399794�:
The intervals in Fig. 14 are (a) the first of Eq. (52), i.e. [0, gHI], (b) Eq. (55), i.e. [gHI, gOS], (c) second of Eq. (52), i.e. [gOS, gDC], (d)
the decoupled (TPS) interval [gDC, 1/2]. The QM-matrices complement the M-matrices so that the entire elliptic region is cov-
ered as indicated in Fig. 15b.

A further consequence of this analysis is that for g belonging to the above intervals (a)–(c) (and always away from the
singular point), when not equal to one of the optimal points, the QM-matrix schemes will again have up to 9-points in sup-
M13

0.5
H/I

M15
M14

M12

DCos
0.0

ij+M

ij-M

Fig. 14. Unique coefficients M12, M13, M14, M15 versus g (quadrature range).

Fig. 15. M-matrix zone and QM-matrix zone for optimal support FPS scheme. (a) Optimal support M-matrix zone (b) QM-matrix zone.
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port. This is an important observation when applying the method to heterogeneous cases where a locally upscaled tensor is
used to define the unique g optimal quadrature point over a dual-cell as discussed above. Note that the upscaled tensor is
only used to define the quadrature, once the quadrature is defined, the flux-continuous method is then used to solve the
original problem with the original permeability field. For general permeability variation the resulting value of g is unlikely
to lead to exact optimal support, but can still improve solution resolution. Numerical pressure solutions are compared for a
range of quadrature points spanning the quadrature interval and show that well resolved solutions are obtained within a
range of 15% of the optimal point.

Finally we again emphasize that the above analysis is for constant coefficients. The discrete matrix will not necessarily be
symmetric in the general case, e.g., for general quadrilateral cells with a physical space formulation (where exact geometry is
maintained in the finite-volume flux) and the coefficients will not take such a simple form. However, the above analysis still
provides an important guide in terms of discretization effects.

11. Numerical results

A comparison is now presented between the new full pressure support formulation and earlier triangular pressure
support formulation. As with the TPS family, the new FPS family of schemes are exact for piecewise linear test cases with
jumps in full-tensor permeability. However unlike TPS, the FPS formulation is also exact for piecewise bilinear pressure
fields with jumps in full-tensor permeability, consistent with the FPS sub-cell bilinear basis functions. Convergence
behaviour has been found to match that of the TPS schemes for earlier lower anisotropy test cases, an example of con-
vergence is given in case 1. Cases 2, 3 and 4 below demonstrate the advantages of the new methods in terms of prevent-
ing spurious oscillations.

11.0.1. CASE 1: piecewise quadratic test case

The first case is from [3]. In this case the pressure field is varying piecewise quadratically over the domain shown in
Fig. 16. The domain discontinuity is aligned along the line x = 1/2, and the analytical solution is given by
/ðx; yÞ ¼ clx2 þ dly2; x < 1=2;
ar þ brxþ crx2 þ dry2; x P 1=2;

(

K ¼

50 0
0 1

� �
; x < 1=2;

1 0
0 10

� �
; x P 1=2;

8>>><>>>:
a ¼ K11jr=K11jl;
b ¼ K22jl=K22jl;
ar ¼ 1;
f ¼ 4ar=ðða� 2Þbþ 1Þ;
br ¼ ðb� 1Þf ;
cr ¼ f ;

dr ¼ �crK11jr=K22jr;
cl ¼ abcr ;

dl ¼ dr :

ð56Þ
Fig. 16. Two sub-domains with discontinuous permeability.
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Dirichlet boundary conditions are imposed, permeability is discontinuous across the line x = 1/2. Convergence rates for FPS
are shown in Fig. 17. In this case q = 0.1667 gives the best convergence rate.

11.0.2. Optimal convergence

We also note that convergence tests reported in [41] indicate that their scheme yields optimal convergence for high
anisotropy on distorted meshes. We have also observed this type of convergence behaviour on a similar problem using
our optimal support quadrature point.

11.0.3. Case 2: planar full-tensor field

The second case involves a uniform anisotropic domain with a Green’s function (point source) in the middle of the domain
and with Dirichlet boundary pressure data defined by the Green’s function.

The full-tensor is given by
K ¼ ½2464:360020;1148:683643;1148:683643;536:6399794� ð57Þ
with high anisotropy ratio 3000:1 and grid non-aligned with the principal axes, which are oriented at an angle of 25 degrees
to the computational grid, leading to a full-tensor. The full-tensor field violates the inequality of Eq. (47) so that no 9-point
scheme or subset scheme can possess an M-matrix in this case.

The first result involves using the TPS 9-point scheme with q = 1 on a 64 � 64 grid. The TPS numerical pressure solution is
shown in Figs. 18(a) and 19(a) with visible strong spurious oscillations. We note that the condition of Eq. (46) could not be
satisfied by the TPS scheme due to the limited quadrature range.

The family of FPS schemes are investigated here. The quadrature points that have been tested are given below
g ¼ ½0;1=6;gH=I;1=4;1=3;gOS � e;gOS;gOS þ e;0:45�; ð58Þ
where gH/I, gOS correspond to the two optimal QM-matrix schemes, here e is defined by 15% of optimal support quadrature
gOS.

Results are shown for a 64 � 64 grid in Figs. 18 and 19. The solution resolution is seen to sharpen gradually from g = 0 to
g = 0.45. In this case the solution in the range gH/I is found to be of a slightly more diffuse and smoother nature. At g = 0.25
the mid-point of the quadrature range, which would correspond with the scheme of [38], the solution is of medium resolu-
tion, but also indicates the formation of a trough either side of the peak. Since the tensor is spatially constant throughout the
field the FPS family coincides with the CVFE family. Note in this constant coefficient case g = 1/3 corresponds to the Galerkin
finite element method and g = 1/6 corresponds with the sixth-order accurate Laplacian operator when the tensor is diagonal
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isotropic [34]. For g = gOS FPS has an angled 7-point approximation according to local orientation of the full-tensor field.
Although a trough now forms either side of the peak, the numerical pressure solutions of Figs. 18 and 19 from (d) to (h)
are otherwise of improved resolution and practically oscillation free for the entire quadrature of Eq. (58). The solutions cor-
responding to the interval [gOS � e, gOS + e] (e) to (g) are seen to have quite comparable resolution.



Fig. 19. Case 2: Iso-surface plots for homogeneous full-tensor case. (a) TPS q = 1. (b) FPS H scheme. (c) FPS g = 0.25. (d) FPS g ¼ 1
3. (e) FPS g = gOS � 15%. (f)

FPS g = gOS. (g) FPS g = gOS + 15%. (h) FPS g = 0.45.
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11.0.4. Case 3: Strong discontinuous full-tensor (zigzag) field

In this case the boundary conditions for the unit domain involve a vertical line source placed across the middle of the
second section for (x = 0.5, 0.25 6 y 6 0.75) together with zero pressure prescribed on all boundary walls. The permeability
tensor changes direction in anisotropy at one third and two thirds the way across the domain. The discontinuous full-tensor
permeability field is defined below in sections varying from
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K ¼ ½2464:360020;þ1148:683643;þ1148:683643;536:6399794�
to second section with
K ¼ ½2464:360020;�1148:683643;�1148:683643;536:6399794�
and third section with
K ¼ ½2464:360020;þ1148:683643;þ1148:683643;536:6399794�
as indicated in Fig. 20, at each section the principal axes are oriented at an angle of 25 degrees, (i.e. plus, minus, plus 25 de-
grees) to the computational grid. The tensor again has a principal anisotropy ratio of 3000:1, violating the M-matrix condi-
tion, Eq. (47) in each section. A 64 � 64 grid is employed for the computations.

Results are presented for the TPS scheme with q = 1. Figs. 21(a) and 22(a) for a 64 � 64 grid, again the condition of Eq. (46)
could not be satisfied by the TPS scheme due to the smaller quadrature range (the cross-term is greater than the harmonic
average of the diagonals, i.e. Eq. (49) holds in this case). There are very strong oscillations in the solution showing clear vio-
lation of the maximum principle as expected from the M-matrix analysis.

We now compare with the FPS scheme for the above range of quadrature points in case 2. A locally upscaled tensor is used
to define the quadrature over the dual-cell, which yields a mean tensor for regions where permeability varies, in this case
along the sub-domain boundaries where permeability is discontinuous.

We begin with the optimal scheme quadrature point defined by Eq. (46). In this case away from the discontinuities the
support of the scheme reduces such that the scheme fulfills the optimal support condition. Thus away from the discontinuities
this particular FPS scheme essentially leads to an angled approximation according to local orientation of the full-tensor field,
the results are shown in Figs. 21(f) and 22(f). While oscillations are present for some quadrature points, they are seen to be
considerably reduced compared to TPS and the solution is well resolved. Thus the FPS formulation yields almost oscillation
free results for both planar and discontinuous full-tensor permeability fields.

In general, the solution resolution is seen to sharpen from g = 0 to g = 0.45, Figs. 21 and 22. Here solutions are seen to have
quite comparable resolution in the interval [1/3, gOS + e]

11.0.5. Case 4: Strong discontinuous full-tensor 2 � 2 domain

In this case the boundary conditions involve a source and sink located at diagonally opposite points in the field (source
lower left r = (0.25,0.25) and zero pressure prescribed on the boundary walls. The permeability tensor changes direction in
anisotropy over each quarter of the domain. With reference to sub-domains 1–4, the full-tensor field is defined by
K ¼ ½2464:360020;þ1148:683643;þ1148:683643;536:6399794�
in 1,
K ¼ ½2464:360020;�1148:683643;�1148:683643;536:6399794�
in 2,
K ¼ ½2464:360020;þ1148:683643;þ1148:683643;536:6399794�
in 3
K ¼ ½2464:360020;�1148:683643;�1148:683643;536:6399794�
Ratio: 3000:1
Angle: 25 degree

Ratio: 3000:1
Angle: -25 degree

Ratio: 3000:1
Angle: 25 degree

Fig. 20. Case 3: Principal axes of permeability in three sub-domains.





Fig. 22. Case 3: Iso-surface plot, 3 sub-domains. (a) TPS q = 1. (b) FPS H scheme. (c) FPS g = 0.25. (d) FPS g ¼ 1
3. (e) FPS g = gOS � 15%. (f) FPS g = gOS. (g) FPS

g = gOS + 15%. (h) FPS g = 0.45.
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in 4, as indicated in Fig. 23. In each sub-domain the principal axes are oriented at an angle of +25 or �25 degrees, to the
computational grid as indicated in Fig. 23. As before the tensor has a principal anisotropy ratio of 3000:1, and the elliptic
tensor violates the condition for an M-matrix. A 64 � 64 grid is employed for the comparison.

Results from the TPS scheme with q = 1 Figs. 24(a) and 25(a) for a 64 � 64 grid, indicate the decoupling effect due to the
small quadrature range at the upper end of the quadrature interval. Again there are very strong oscillations in the solution
showing clear violation of the maximum principle.



Ratio: 3000:1
Angle: 25 degree

Ratio: 3000:1
Angle: 25 degree

Ratio: 3000:1
Angle: -25 degree

Ratio: 3000:1
Angle: -25 degree

4

1 2

3

Fig. 23. Case 4: 2 � 2 sub-domains with local tensor principal axes orientations.
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We next compare with the family of FPS schemes for the above range of quadrature points. This case leads to similar con-
clusions to the previous test. As in the previous case a locally upscaled tensor is used to define the quadrature over the dual-
cell, which yields a mean tensor for regions where permeability varies, along the sub-domain boundaries where permeability
is discontinuous.

For the optimal scheme quadrature point defined by Eq. (46), away from the discontinuities the support of the scheme
reduces such that the scheme fulfills the optimal support condition with an angled approximation according to the local sign
of cross-terms of the full-tensor field. The optimal quadrature point is based on a local mean tensor where permeability var-
ies. Results are shown in Figs. 24 and 25.

In general, the solution resolution consistently sharpens from g = 0 to g = 0.45. Oscillations are not detected for some
quadrature points. Here solutions are seen to have quite comparable resolution and be particularly well resolved for g in
the interval [1/3,0.45], Figs. 24 and 25.
12. Conclusions

A new family of locally conservative flux-continuous, finite-volume schemes is presented for solving the general
tensor pressure equation. The new family of schemes have full pressure continuity imposed across control-volume
faces, in contrast to the earlier families of flux-continuous schemes, which are point-wise continuous in pressure and
flux.

The new family of schemes offers maximum flexibility in range of quadrature. The permissible quadrature range of the
earlier point-wise schemes is shown to be half that of the full continuity schemes for a diagonal tensor. When applying both
the point-wise continuous schemes and full pressure continuity schemes to full-tensor fields with high anisotropy ratios, the
schemes can fail to satisfy the maximum principle. For strong full-tensor anisotropy, the point-wise TPS schemes are shown
to have quadrature points that lie within a small neighbourhood of the singular decoupled end point of the quadrature inter-
val, leading to strong spurious oscillations in the solution.

The family of FPS schemes are shown to be symmetric positive definite for a spatially constant full elliptic tensor.
Constant coefficient M-matrix analysis of the general family of full-tensor schemes define tensor-coefficient dependent
quadrature interval limits for obtaining locally bounded solutions. When the governing conditions are satisfied the
discrete pressure field is free of spurious oscillations. An optimal support condition is identified from the M-matrix
analysis, via a bounding quadrature point that defines the upper limit on the tensor cross-term.

The new family of schemes are tested on a range of problems involving strong full-tensor anisotropy where both M-ma-
trix and monotone matrix conditions are violated. Results are presented for a range of quadrature points belonging to the
new family and show that the occurrence of spurious oscillations in the discrete pressure field is minimal provided the quad-
rature point lies outside of the neighbourhood of the point-wise continuity schemes which are essentially decoupled in this
case. Analysis of the non-monotone case leads to the introduction of quasi-positive QM-matrices. The optimal support quad-
rature point is also shown to be optimal with respect to a QM-matrix.

The new full pressure support schemes are shown to share the full CVFE quadrature range for spatially constant tensor
coefficients. The optimal support quadrature point is shown to lie within the quadrature range of the full pressure support
scheme for all elliptic tensors. For regions where the tensor is spatially constant, the optimal support quadrature point yields
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a scheme that self-adapts the discretization support locally according to the local orientation of the tensor field. The tests
conducted show the optimal point yields results of sharper resolution than results corresponding to the first interval of
the quadrature range.



Fig. 25. Case 4: Iso-surface plot for 2 � 2 domain. (a) TPS q = 1. (b) FPS H scheme. (c) FPS g = 0.25. (d) FPS g ¼ 1
3. (e) FPS g = gOS � 15%. (f) FPS g = gOS. (g) FPS

g = gOS + 15%. (h) FPS g = 0.45.
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For a spatially variable tensor field a locally upscaled tensor is used to define the local tensor dependent optimal quad-
rature point per dual-cell, the resulting finite-volume method is then applied to the original (non-upscaled) problem. In this
case the scheme will have a quadrature point that lies in the neighbourhood of the exact optimal point. Tests of quadrature
points within 15% (or slightly more) of the optimal point are found to yield results of comparable resolution to that of the
optimal point, with similar sharper resolution.
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Appendix 1. Symmetric positive definite CVFE and FPS families

Symmetry of the cell-wise (or dual-cell) matrix for the CVFE family with cell-wise constant general tensor T follows if
Mij ¼ Mji:
For example for i = 1, i = 3, assembling cell-wise flux contributions for the respective equations
X4

j¼1

M1j/j ¼ FW þ FS

X4

j¼1

M3j/j ¼ �FN � FE
then identify the / coefficients, e.g.
M13 ¼ �
1
2
ððT11 þ T11Þgþ T12Þ ¼ M31
and by inspection symmetry is verified. Symmetry of the discrete CVFE matrix follows from symmetry of the cell-wise
matrix.

The discrete cell energy of the CVFE family is given by the inner product UtMU where U = (/1, /2, /3, /4)t. Using the CVFE
flux definition of Eq. (22), the cell energy is expanded ([2])
UtMU ¼ /1ðFW þ FSÞ þ /2ðFE � FSÞ � /3ðFN þ FEÞ þ /4ðFN � FW Þ
¼ FNð/4 � /3Þ þ FSð/1 � /2Þ þ FEð/2 � /3Þ þ FWð/1 � /4Þ
and using the flux approximations of Eq. (22) the energy for the CVFE family for any quadrature point defined via g can be
written as
UtMU ¼ 1
2
½T11ð1� 2gÞð/2

21 þ /2
34Þ þ gð/21 þ /34Þ

2 þ T22ð1� 2gÞð/2
41 þ /2

32Þ þ gð/41 þ /32Þ
2 þ T12ð/21 þ /34Þ

� ð/41 þ /32Þ�; ð59Þ
where 1 � 2g > 0. Note that the double suffix of / in Eq. (59) denotes a potential difference, e.g., /21 = /2 � /1. Using the
identity a2 + b2 P (a + b)2/2 it follows that
UtMU P
1
4
ðT11x2 þ 2T12xyþ T22y2Þ ð60Þ
where x = (/21 + /34) and y = (/41 + /32), and it follows that the quadratic is positive with T11 + 2T12(y/x) + T22(y/x)2 P 0 if
T2

12 6 T11T22, i.e. T is elliptic. The Dirichlet condition ensures strict inequality. Therefore the CVFE family is symmetric posi-
tive definite for an elliptic cell-wise constant tensor if g < 1/2.

Since the FPS family coincides with the CVFE family for a spatially constant tensor, c.f. Section 7, it follows that the FPS
family is SPD for a spatially constant tensor field.

Appendix 2. H-scheme coefficients

CVD(MPFA) g = T22/(T11 + T22) (FPS) H-scheme: Constant Tensor Field
Integer coordinates
 Coefficients
 Full tensor
i, j
 M11
 2(T11)

i + 1,j
 M12
 �T11 + T22
i + 1,j + 1
 M13
 � 1
2 T22 � 1

2 T12
i, j + 1
 M14
 0

i � 1,j + 1
 M15
 � 1

2 T22 þ 1
2 T12
i � 1,j
 M16
 �T11 + T22
i � 1,j � 1
 M17
 � 1
2 T22 � 1

2 T12
i, j � 1
 M18
 0

i + 1,j � 1
 M19
 � 1

2 T22 þ 1
2 T12
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